40.6
(a)
連分数の周期数列[(b1, ..., bm)]の周期自体を求めるのではなく、
√D=a+1/α0, bn=⌊αn-1⌋, αn-1=bn+1/αnによって決まる実数列{αn}(n≥1)について、
α0=αnとなる最小のnを求めた方が、精度よく計算でき、
しかも比較がα0との比較だけで済むのでやりやすい。
α0=(a+√D)/(D-a2)である。αn=(rn+sn√D)/tnとおくと、
r0=a, s0=1, t0= D-a2。また、bn+1=⌊αn⌋を用いてαn=bn+1+1/αn+1を解いて
rn+1=tn(bn+1tn-rn), sn+1=sntn, tn+1=sn2D-(bn+1tn-rn)2。
この漸化式をプログラムに組んで、以下の表を得る。
√2=[1, (2)]
√3=[1, (1, 2)]
√5=[2, (4)]
√6=[2, (2, 4)]
√7=[2, (1, 1, 1, 4)]
√8=[2, (1, 4)]
√10=[3, (6)]
√11=[3, (3, 6)]
√12=[3, (2, 6)]
√13=[3, (1, 1, 1, 1, 6)]
√14=[3, (1, 2, 1, 6)]
√15=[3, (1, 6)]
√17=[4, (8)]
√18=[4, (4, 8)]
√19=[4, (2, 1, 3, 1, 2, 8)]
√20=[4, (2, 8)]
√21=[4, (1, 1, 2, 1, 1, 8)]
√22=[4, (1, 2, 4, 2, 1, 8)]
√23=[4, (1, 3, 1, 8)]
√24=[4, (1, 8)]
√26=[5, (10)]
√27=[5, (5, 10)]
√28=[5, (3, 2, 3, 10)]
√29=[5, (2, 1, 1, 2, 10)]
√30=[5, (2, 10)]
√31=[5, (1, 1, 3, 5, 3, 1, 1, 10)]
√32=[5, (1, 1, 1, 10)]
√33=[5, (1, 2, 1, 10)]
√34=[5, (1, 4, 1, 10)]
√35=[5, (1, 10)]
√37=[6, (12)]
√38=[6, (6, 12)]
√39=[6, (4, 12)]
√40=[6, (3, 12)]
√41=[6, (2, 2, 12)]
√42=[6, (2, 12)]
√43=[6, (1, 1, 3, 1, 5, 1, 3, 1, 1, 12)]
√44=[6, (1, 1, 1, 2, 1, 1, 1, 12)]
√45=[6, (1, 2, 2, 2, 1, 12)]
√46=[6, (1, 3, 1, 1, 2, 6, 2, 1, 1, 3, 1, 12)]
√47=[6, (1, 5, 1, 12)]
√48=[6, (1, 12)]
√50=[7, (14)]
(b)
(3+2√2)/5=[1, 6, (28, 7)]
(3+2√3)/5=[(1, 3, 2, 2, 2, 3, 1, 10)]
(3+2√5)/5=[(1, 2, 44, 2, 1, 3, 2, 1, 1, 10, 1, 1, 2, 3)]
(3+2√6)/5=[(1, 1, 1, 2)]
(3+2√7)/5=[(1, 1, 1, 1, 12, 1, 1, 1, 1, 2, 5, 2, 52, 2, 5, 2)]
(3+2√8)/5=[(1, 1, 2, 1, 2, 1, 1, 1, 1, 7, 2, 7, 1, 1)]
(3+2√10)/5=[(1, 1, 6, 2, 2, 15, 2, 2, 6, 1, 1, 1, 1, 1, 62, 1, 1, 1)]
(3+2√11)/5=[(1, 1, 12, 1, 1, 1, 2, 1)]
(3+2√12)/5=[(1, 1, 68, 1, 1, 1, 3, 1)]
(3+2√13)/5=[(2, 23, 1, 2, 5, 1)]
(3+2√14)/5=[(2, 10, 2, 1, 8, 1)]
(3+2√15)/5=[(2, 6, 1, 2, 2, 1, 2, 1, 76, 1, 2, 1, 2, 2, 1, 6, 2, 1, 18, 1)]
(3+2√17)/5=[2, (4, 82, 4, 3, 20, 3)]
(3+2√18)/5=[2, (3, 2, 1, 2, 1, 2, 3, 3, 10, 3)]
(3+2√19)/5=[2, (2, 1, 10, 5, 28, 1, 6, 3)]
(3+2√20)/5=[2, (2, 1, 1, 2, 1, 88, 1, 2, 1, 1, 2, 3, 5, 3)]
(3+2√21)/5=[2, (2, 3, 4, 3)]
(3+2√22)/5=[2, (2, 9, 1, 92, 1, 9, 2, 3, 3, 1, 1, 1, 1, 1, 3, 3)]
(3+2√23)/5=[2, (1, 1, 13, 7, 3, 3)]
(3+2√24)/5=[2, (1, 1, 3, 1, 2, 3)]
(3+2√26)/5=[2, (1, 1, 1, 3, 2, 3)]
(3+2√27)/5=[2, (1, 2, 9, 11, 2, 3)]
(3+2√28)/5=[2, (1, 2, 1, 1, 8, 4, 8, 1, 1, 2, 1, 3, 1, 1, 14, 1, 1, 3)]
(3+2√29)/5=[2, (1, 3, 15, 8, 4, 1, 1, 3)]
(3+2√30)/5=[2, (1, 3, 1, 3, 1, 1, 2, 3, 1, 108, 1, 3, 2, 1, 1, 3)]
(3+2√31)/5=[2, (1, 4, 1, 3, 1, 1, 1, 2, 7, 22, 7, 2, 1, 1, 1, 3)]
(3+2√32)/5=[2, (1, 6, 3, 1, 1, 112, 1, 1, 3, 6, 1, 3, 1, 1, 1, 27, 1, 1, 1, 3)]
(3+2√33)/5=[2, (1, 8, 1, 3, 1, 2, 3, 4, 3, 2, 1, 3)]
(3+2√34)/5=[2, (1, 13, 1, 3, 1, 2, 1, 2, 1, 3)]
(3+2√35)/5=[2, (1, 28, 1, 3, 1, 3, 3, 1, 1, 4, 6, 118, 6, 4, 1, 1, 3, 3, 1, 3)]
(3+2√37)/5=[3, (30, 4, 1, 4, 1, 120, 1, 4, 1, 4)]
(3+2√38)/5=[3, (15, 4, 1, 6, 2, 4, 2, 6, 1, 4)]
(3+2√39)/5=[3, (10, 4, 1, 8, 1, 4)]
(3+2√40)/5=[3, (7, 1, 2, 2, 1, 2, 1, 4, 3, 31, 3, 4, 1, 2, 1, 2, 2, 1, 7, 4, 1, 13, 4, 126, 4, 13, 1, 4)]
(3+2√41)/5=[3, (6, 4, 1, 24, 1, 4)]
(3+2√42)/5=[3, (5, 4, 1, 128, 1, 4)]
(3+2√43)/5=[3, (4, 2, 15, 1, 17, 1, 3, 1, 10, 7, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 7, 10, 1, 3, 1, 17, 1, 15, 2, 4, 5, 43, 1, 1, 9, 1, 1, 2, 1, 1, 9, 1, 1, 43, 5)]
(3+2√44)/5=[3, (3, 1, 18, 5)]
(3+2√45)/5=[3, (3, 1, 1, 7, 1, 4, 2, 14, 2, 4, 1, 7, 1, 1, 3, 5, 12, 134, 12, 5)]
(3+2√46)/5=[3, (3, 5, 8, 1, 5, 1, 8, 5)]
(3+2√47)/5=[3, (2, 1, 11, 1, 3, 1, 1, 136, 1, 1, 3, 1, 11, 1, 2, 5, 7, 34, 7, 5)]
(3+2√48)/5=[3, (2, 1, 2, 3, 1, 4, 1, 3, 2, 1, 2, 5, 5, 1, 5, 5)]
(3+2√50)/5=[3, (2, 2, 1, 140, 1, 2, 2, 5, 4, 2, 1, 1, 1, 5, 35, 5, 1, 1, 1, 2, 4, 5)]
0 件のコメント :
コメントを投稿